Pemanfaatan Aplikasi Particle Swarm Optimization (PSO) untuk Pengaturan Pengurangan Beban Tenaga Listrik
DOI:
https://doi.org/10.36277/jteuniba.v8i2.254Keywords:
Aplikasi, PSO, Pengaturan, Beban listrikAbstract
Research on load shedding using the Particle Swarm Optimization (PSO) method is an important step in optimising the distribution of electrical loads to avoid rolling blackouts. This research aims to improve efficiency and effectiveness in handling load shedding in the electricity distribution system through the application of the Particle Swarm Optimisation (PSO) method. PSO is an optimisation algorithm inspired by the behaviour of particle swarms in searching for food sources. This research resulted in the effective implementation of load shedding based on PSO optimisation coupled with a hybrid method. It was found that this method can significantly reduce power outages and improve the performance of the electricity distribution system. This study concludes that the use of Particle Swarm Optimisation (PSO) method in load shedding in the electricity distribution system can provide an optimal and efficient solution to overcome emergency situations and improve the reliability of electricity supply. Further research can be conducted to evaluate the performance of this method in more complex scenarios and a wider variety of network conditions.
Penelitian tentang load shedding dengan menggunakan metode Particle Swarm Optimization (PSO) merupakan langkah penting dalam mengoptimalkan distribusi beban listrik untuk menghindari pemadaman bergilir. Penelitian ini bertujuan untuk meningkatkan efisiensi dan efektivitas dalam penanganan load shedding pada sistem distribusi listrik melalui penerapan metode Particle Swarm Optimization (PSO). PSO adalah algoritma optimisasi yang terinspirasi dari perilaku gerakan kelompok partikel dalam mencari sumber pakan. Penelitian ini menghasilkan implementasi efektif load shedding berdasarkan optimasi PSO ditambah dengan metode hybrid. Ditemukan bahwa metode ini dapat mengurangi pemadaman listrik secara signifikan dan memperbaiki kinerja sistem distribusi listrik. Penelitian ini menyimpulkan bahwa penggunaan metode Particle Swarm Optimization (PSO) dalam load shedding pada sistem distribusi listrik dapat memberikan solusi yang optimal dan efisien untuk mengatasi situasi darurat dan meningkatkan keandalan pasokan listrik. Penelitian lebih lanjut dapat dilakukan untuk mengevaluasi kinerja metode ini dalam skenario yang lebih kompleks dan variasi kondisi jaringan yang lebih luas.
Downloads
References
X. Du, M. Zhang, and Y. He, “Self-optimization examination system based on improved particle swarm optimization,” Nonlinear Eng., vol. 12, no. 1, 2023, doi: 10.1515/nleng-2022-0271.
X. Du, M. Zahang, X. Wang, and C. Science, “m nl ad in e e V by e th rsio is n fil O e is nly m nl ad in e e V by e th rsio is n fil O e is nly,” vol. 7, no. 4, pp. 163–172, 2014.
S. Karthika and P. Rathika, “An Adaptive Data Compression Technique Based on Optimal Thresholding using Multi-Objective PSO Algorithm for Power System Data,” Appl. Soft Comput., p. 111028, 2023, doi: 10.1016/j.asoc.2023.111028.
M. Masjudin, S. H. Juliatiza, and C. A. Wicaksana, “Optimasi Under Frequency Load Shedding Menggunakan Metode PSO Algorithm Pada Sistem Distribusi PT. Dian Swastatika Sentosa Serang Power Plant,” Setrum Sist. Kendali-Tenaga-elektronika-telekomunikasi-komputer, vol. 10, no. 2, pp. 105–113, 2021, doi: 10.36055/setrum.v10i2.13138.
S. M. Kiseng, C. M. Muriithi, and G. N. Nyakoe, “Under voltage load shedding using hybrid ABC-PSO algorithm for voltage stability enhancement,” Heliyon, vol. 7, no. 10, p. e08138, 2021, doi: 10.1016/j.heliyon.2021.e08138.
N. Al Masood, A. Jawad, and S. Banik, “A RoCoF-constrained underfrequency load shedding scheme with static voltage stability-based zoning approach,” Sustain. Energy, Grids Networks, vol. 35, p. 101080, 2023, doi: 10.1016/j.segan.2023.101080.
S. Abdollahi kakroudi, R. Ebrahimi, and A. Ahmadi, “Real-time under-voltage load shedding method considering integer-value load model and feeder participation in demand response,” Electr. Power Syst. Res., vol. 217, no. November 2022, p. 109115, 2023, doi: 10.1016/j.epsr.2023.109115.
P. Singh, R. Arya, L. S. Titare, P. Purey, and L. D. Arya, “Value aided optimal load shedding accounting voltage stability consideration employing Crow Search Algorithm with modification based on Lampinen’s criterion,” Appl. Soft Comput., vol. 143, 2023, doi: 10.1016/j.asoc.2023.110391.
M. Larrea, A. Porto, E. Irigoyen, A. J. Barragán, and J. M. Andújar, “Extreme learning machine ensemble model for time series forecasting boosted by PSO: Application to an electric consumption problem,” Neurocomputing, vol. 452, pp. 465–472, 2021, doi: 10.1016/j.neucom.2019.12.140.
T. Skrjanc, R. Mihalic, and U. Rudez, “A systematic literature review on under-frequency load shedding protection using clustering methods,” Renew. Sustain. Energy Rev., vol. 180, no. September 2022, p. 113294, 2023, doi: 10.1016/j.rser.2023.113294.
P. Pourghasem, H. Seyedi, and K. Zare, “A new optimal under-voltage load shedding scheme for voltage collapse prevention in a multi-microgrid system,” Electr. Power Syst. Res., vol. 203, no. June 2021, p. 107629, 2022, doi: 10.1016/j.epsr.2021.107629.
H. Awad and A. Hafez, “Optimal operation of under-frequency load shedding relays by hybrid optimization of particle swarm and bacterial foraging algorithms,” Alexandria Eng. J., vol. 61, no. 1, pp. 763–774, 2022, doi: 10.1016/j.aej.2021.06.034.
M. Talaat, A. Y. Hatata, A. S. Alsayyari, and A. Alblawi, “A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach,” Energy, vol. 190, p. 116423, 2020, doi: 10.1016/j.energy.2019.116423.
Y. Chen, S. Liao, and J. Xu, “Emergency load-shedding optimization control method based on reinforcement learning assistance,” Energy Reports, vol. 8, pp. 1051–1061, 2022, doi: 10.1016/j.egyr.2022.02.140.
A. Rafinia, J. Moshtagh, and N. Rezaei, “Stochastic optimal robust design of a new multi-stage under-frequency load shedding system considering renewable energy sources,” Int. J. Electr. Power Energy Syst., vol. 118, no. July 2019, 2020, doi: 10.1016/j.ijepes.2019.105735.
K. Hou et al., “A fast optimal load shedding method for power system reliability assessment based on shadow price theory,” Energy Reports, vol. 8, pp. 352–360, 2022, doi: 10.1016/j.egyr.2021.11.104.
I. Darmana, A. R. Salvayer, and Erliwati, “Load Shedding Simulation Using A Frequency Relay in Lampung Electrical System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 990, no. 1, 2020, doi: 10.1088/1757-899X/990/1/012005.
H. H. A. W. Al-Sadooni and R. H. Al-Rubayi, “Combinational load shedding using load frequency control and voltage stability indicator,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 4661–4671, 2022, doi: 10.11591/ijece.v12i5.pp4661-4671.
K. Teeparthi and D. M. Vinod Kumar, “Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators,” Eng. Sci. Technol. an Int. J., vol. 20, no. 2, pp. 411–426, 2017, doi: 10.1016/j.jestch.2017.03.002.
R. Sepehrzad, M. Khojasteh Rahimi, A. Al-Durra, M. Allahbakhshi, and A. Moridi, “Optimal energy management of distributed generation in micro-grid to control the voltage and frequency based on PSO-adaptive virtual impedance method,” Electr. Power Syst. Res., vol. 208, no. February, p. 107881, 2022, doi: 10.1016/j.epsr.2022.107881.
M. A. M. Shaheen, H. M. Hasanien, and A. Alkuhayli, “A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution,” Ain Shams Eng. J., vol. 12, no. 1, pp. 621–630, 2021, doi: 10.1016/j.asej.2020.07.011.
V. Kachitvichyanukul, “Comparison of Three Evolutionary Algorithms: GA, PSO, and DE,” Ind. Eng. Manag. Syst., vol. 11, no. 3, pp. 215–223, 2012, doi: 10.7232/iems.2012.11.3.215.
M. M. Aman, M. Arshad, H. K. Zuberi, and J. A. Laghari, “A hybrid scheme of load shedding using globalized frequency and localized voltage (GFLV) controller,” Int. J. Electr. Power Energy Syst., vol. 113, no. November 2018, pp. 674–685, 2019, doi: 10.1016/j.ijepes.2019.05.073.
M. Ahmadipour, M. Murtadha Othman, Z. Salam, M. Alrifaey, H. Mohammed Ridha, and V. Veerasamy, “Optimal load shedding scheme using grasshopper optimization algorithm for islanded power system with distributed energy resources,” Ain Shams Eng. J., vol. 14, no. 1, p. 101835, 2022, doi: 10.1016/j.asej.2022.101835.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Moethia Faridha, Dewiani Dewiani
This work is licensed under a Creative Commons Attribution 4.0 International License.