Pembangkitan Ekonomis pada sistem Kelistrikan Mahakam 150 Kv dengan Menggunakan Particle Swarm Optimization (PSO)
Keywords:
Pembangkitan Ekonomis, ED, particle swarm optimization (PSO), minimalisasi.Abstract
Abstract— This paper presents a method for determining the economic dispatch in accordance with the request of load requirements. The main purpose of the ED problem is to minimize the total cost of fuel at thermal plants in the electricity system. Particle swarm optimization (PSO) method is proposed to solve the problem of minimization of the fuel cost. This method was tested on the standard IEEE 26-bus test system to validate superiority of the proposed method compared with other methods before simulated on a real system, the Mahakam 150 kV electrical system.
Intisari— Paper ini menyajikan metode untuk menentukan pembangkitan ekonomis (economic dispatch, ED) berdasarkan permintaan kebutuhan beban. Tujuan utama dari masalah ED adalah untuk meminimalkan biaya bahan bakar total pada pembangkitpembangkit termal yang ada dalam sistem kelistrikan. Metode particle swarm optimization (PSO) diusulkan untuk menyelesaikan masalah minimalisasi biaya bahan bakar. Metode ini diuji pada standar IEEE sistem uji 26-bus sebagai validitas terhadap keunggulan dari metode yang diusulkan dibandingkan dengan metode lain sebelum disimulasikan pada sistem real, yakni sistem kelistrikan Mahakam 150 kV.
Downloads
References
[2] Saadat, H. “Power system analysis”. Mcraw-Hill, 1999. Pp. 189-247.
[3] Allen, J. Wood, A.J. dan Wollenberg, B.F. 1996. “Electric power system applications of optimization”. John Wiley & Sons, Inc. Pp. 514518.
[4] Z.X. Liang, J. D. Glover. “A Zoom Feature For a Dynamic Programming Solution to Economic Dispatch Including Transmission Losses”. IEEE Transactions on Power Systems, 1992; page 544-550.
[5] S. N. Keshmiri and W. Gao, “Multi-objective stochastic economic dispatch” North Am. Power Symp. 2010, NAPS 2010, 2010.
[6] M. D. Ilić and J. H. Lang, “The complexity of voltage and reactive power dispatch in control centers: From analysis to on-line decision making” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011.
[7] M. Tofighi, R. Maddahi, and M. Sadeqzadeh, “An Improved Genetic Algorithm Based Economic Dispatch With N onsmooth Fuel Cost Function” no. July, 2011.
[8] Y. Chen, “A Hybrid Intelligent Optimization Algorithm for Dynamic Economic Dispatch with Valve-point Effects” no. 50937002, 2012.
[9] R. Goncalves, C. Almeida, M. Goldbarg, E. Goldbarg, and M. Delgado, “Improved cultural immune systems to solve the economic load dispatch problems” 2013 IEEE Congr. Evol. Comput. CEC 2013, pp. 621–628, 2013.
[10] Sandeepdhar, D. S., “Differential Search Algorithm for different Economic Dispatch Problem” no. 3, 2015.
[11] M. Moradi and A. Badri, “Non-Convex Constrained Economic Dispatch with Valve Point Loading Effect Using a Grey Wolf Optimizer Algorithm” 2016.
[12] M. Mahajan and S. Vadhera, “Economic Load Dispatch of Different Bus Systems using Particle Swarm Optimization” no. 1, pp. 1–6, 2012.
[13] J. Guo, C. Jin, W. Liu, and W. Zhou, “An effective particle swarm optimization algorithm with social weight in solving economic dispatch problem considering network losses” Proc. - 2012 3rd Glob. Congr. Intell. Syst. GCIS 2012, no. 3, pp. 80–83, 2012.
[14] A. Jaini, I. Musirin, N. Aminudin, M. M. Othman, and T. K. A. Rahman, “Particle swarm optimization (PSO) technique in economic power dispatch problems” PEOCO 2010 - 4th Int. Power Eng. Optim. Conf. Progr. Abstr., no. June, pp. 308–312, 2010.
[15] A. Allirani, “Particle Swarm Optimization Scheme for the Solution of Economic Dispatch” no. 1. 2012.
[16] S. Chakraborty, T. Senjyu, A. Yona, A. Y. Saber, and T. Funabashi, “Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimisation” IET Gener. Transm. Distrib., vol. 5, no. 10, p. 1042, 2011.
[17] Kennedy, J., dan Eberhart, R., “Particle swarm optimization”, IEEE international conference on neural networks, proceedings, 1995
[18] S. S. Rao, Engineering optimization : theory and practice, fourth edition. John Wiley & Sons, Inc., 2009.
[19] Y. Shi, dan R. Eberhart, “A modified particle swarm optimizer,” the 1998 IEEE international conference on evolutionary computation proceedings, IEEE world congress on computational intelligence, 1998.
[20] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization,” Proc. 1999 Congress on Evolutionary Computation, Washington, DC, pp. 1951-1957. Piscataway, NJ: IEEE Service Centre, 1999.