Identifikasi Wajah Dengan Segmentasi Warna Kulit Menggunakan Metode Viola Jones
DOI:
https://doi.org/10.36277/jteuniba.v4i1.47Keywords:
Face detection, Face Recognition, Viola JonesAbstract
Abstract - Face detection (face detection) is one of the initial steps that is very important before the face recognition process (face recognition). Face detection is the detection of objects in the form of faces in which there are special features that represent the shape of faces in general. One method of face detection is the Viola Jones method. Viola Jones method is used to detect faces and skin color segmentation, test data processing using Matlab and capture on a Smartphone. The test is carried out at normal light intensity with a predetermined distance and face position. The results of this study indicate the level of accuracy of detection of face image variations in the position of face images facing forward (frontal), sideways left and right 45̊. But it has a weakness of this face detection system that is unable to determine faces in images that have faces that are not upright (tilted) or not frontal (facing sideways) at a 90̊ angle. Face position that is upright / not upright will determine the success of this face detection. The level of identification of the Viola Jones simulation was 100% with 4 images consisting of 3 boys and 1 girl.
Downloads
References
[2] A. R. Syafira and G. Ariyanto, “Sistem Deteksi Wajah Dengan Modifikasi Metode Viola Jones,” J. Emit., vol. 17, no. 1, p. ISSN 1411-8890, 2017.
[3] Y. Ferik, H. Octavianto, and H. Wahyu, “DETEKSI WAJAH MENGGUNAKAN ALGORITMA VIOLA JONES,” Progr. Stud. Inform., pp. 1–6, 2016.
[4] B. H. Retno Wahyusari, “Penerapan algoritma viola jones untuk deteksi wajah,” Maj. Ilm. STTR Cepu, no. ISSN 1693-7066, pp. 3–8, 2014.
[5] P. I. D. C. W. Haruno Sajati, Yuliani Indrianingsih, “Deteksi jerawat pada wajah menggunakan metode viola jones,” J. Tek. Inform., 2015.
[6] I. Muhammad Dahria, Usman Muhammadi, “PENGNALAN POLA WAJAH MENGGUNAKAN WEBCAME UNTUK ABSENSI DENGAN METODE WAVELET,” J. Saintikom, vol. 12, no. 2, pp. 95–108, 2013.
[7] H. M. Aris Budi, Suma’inna, “Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis ( PCA ),” Tek. Inform., vol. 9, no. 2, pp. 166–175, 2016.
[8] B. Cahyono, “PENGGUNAAN SOFTWARE MATRIX LABOTORY (MATLAB) DALA PEMBELAJARAN ALJABAR LINIER,” J. Phenom., vol. 1, pp. 45–62, 2013.
[9] A. Suharso, “Pengenalan Wajah Menggunakan Metode Viola-Jones dan Eigenface Dengan Variasi Posisi Wajah Berbasis Webcam,” J. Ilmu Komput. Teknol. Inf., vol. 1, no. ISSN 2503-054X, pp. 19–30, 2016.
[10] A. S. R. Sinaga, “IMPLEMENTASI TEKNIK THRESHODING PADA SEGMENTASI CITRA DIGITAL,” Tek. Inform., vol. 1, no. 2, pp. 48–51, 2017.
[11] Anas, “PENENTUAN THRESHOLD CITRA MULUT DENGAN METODE NORMAL PROBABILITY DENSITY FUNCTION ( NPDF ) GUNAMENDETEKSI MULUT PEMELAJAR,” Ilk. J. Ilm., vol. 9, no. 2, pp. 137–144, 2017.
[12] D. A. Priandini, J. Nangi, S. Kom, M. Muchtar, M. Kom, J. Yusmah, and M. Kom, “Deteksi area plat mobil menggunakan operasi morfologi citra,” J. Inform., pp. 294–302, 2018.
[13] Hendry, Jans, Color Conversation-RGB to YCbCr, J. digital image processing, 2012.