This is an outdated version published on 2021-04-30. Read the most recent version.

SIMULASI SISTEM PENCUCI BAHAN TEKSTIL BERBASIS LOGIKA FUZZY

Authors

  • Muhammad Fatih Azhari Asyauqi Mahasiswa Universitas Negeri Semarang

DOI:

https://doi.org/10.36277/jteuniba.v5i2.90

Abstract

Abstrak

Untuk memaksimalkan tingkah kebersihan dari proses pencucian dan meningkatkan efisiensi energy pada mesin pencuci dapat dilakukan control berbasis logika fuzzy. Dengan logika fuzzy, variable sekitar dapat dilakukan operasi untuk melakukan pengambilan keputusan dengan membuat rentang variable diantara 0 dan 1. Pada system pencuci nilai nilai pada bahan digunakan sebagai nilai input. Simulasi dilakukan dengan software matlab, variable berupa massa dan tingkat kekotoran dari bahan yang menghasilkan keluaran berupa kecepatan motor untuk mencuci bahan. Tingkat kekotoran dari bahan dimasukkan dalam persen dan massa dari bahan dalam kilogram (Kg). Tingkat kekotoran dan berat bahan mempengaruhi kecepatan motor, semakin kotor dan berat bahan maka kecepatan akan bertambah. Hasil yang didapatkan berupa nilai kecepatan motor dari kecepatan maksimalnya yang dipengaruhi oleh beberapa variable.

Kata Kunci- Logika Fuzzy, Mesin Pencuci, Simulasi, Matlab

 

Abstract

To maximize the cleanliness behavior of the washing process and increase the energy efficiency of the washing machine, fuzzy logic used as a control. With variable fuzzy logic, operations used to make decisions by making a variable range between zero and one. In the system, the value of the value of the material used is the input value. By using matlab software for simulation, the variables in the form of mass and level of dirtiness of the material which produce output in the form of motor speed for washing the material. The level of impurity of the ingredients is in percent and the mass of the material is in kilograms (Kg). The level of dirtiness and suggestions that affect the speed of the motor, the dirty and suggestion, the material will increase. The results obtained are in the form of motor speed values from the maximum built by several variables.

Keywords-Fuzzy Logic, Washing Machine, Simulation, Matlab

Downloads

Download data is not yet available.

References

[1] Mia Kastina, Marzuki Silalahi (2016). Logika Fuzzy Metode Mamdani Dalam Sistem Keputusan Fuzzy Produksi Menggunakan Matlab.

[2] Pamungkas Jati, Sunarno, Sujarwata (2017) .Simulasi kendali proportional integral derivative dan logika fuzzy pada sistem eksitasi automatic voltage regulator dengan simulink Matlab.

[3] Ahmet Kayabaşı, Berat Yıldız (2018). DESIGN OF THE DIRECT CURRENT MOTOR SPEED CONTROLLER WITH EMBEDDED SYSTEM USING FUZZY LOGIC

[4] Lidilia Cruz Rivero, Rogelio García Rodríguez, Ma. Del Rosario Pérez, Carlos Mar, Zuleyma Juárez(2015). Fuzzy logic and RULA method for assessing the risk of working.
[5] Radim B'elohlavek(2004). Concept lattices and order in fuzzy logic.

[6] D. Nagarajan, M. Lathamaheswari, J. Kavikumar, and E. Deenadayalan(2019). Interval Type-2 Fuzzy Logic Washing Machine

[7] Muhammad Akram, Shaista Habib and Imran Javed(2014). Intuitionistic Fuzzy Logic Control for Washing Machines.

[8] N Wulandari and A G Abdullah (2018). Design and Simulation of Washing Machine using Fuzzy Logic Controller (FLC).

[9] G G Hungilo, G Emmanuel, J Maiga, A J Santoso (2019) .Fuzzy Logic Control Application: Design and Simulation forWashing Machine.

[10] Tarik Ahmed, Aziz Ahmad, Ashu Toki (2016). Fuzzy Logic Controller for Washing Machine with Five input & three output.

[11] Ankur Agarwal, Ankur Mishra, Mukesh Dixit (2016). Design of an Improved Fuzzy Logic based Control System for Washing Machines.

[12] Twanda mUshiri, Abigal Mahachi, Charles Mbohwa(2017). A Model Reference Adaptive control (MRAC) System for the Pneumatic Valve of the Bottle Washer in Beverages Using Simulink.

[13] Febriadi Santosa.(2013)embedded-system

[14] Aditya Jain, Balakrushna Tripathy (2017). Advances in Application of Fuzzy Sets in Electrical Engineering.

[15] Mehmet Çunkaş1, Omer Aydoğdu (2010). Realization Of Fuzzy Logic Controlled Brushless Dc Motor Drives Using Matlab/Simulink.

[16] N. Sahab, H. Hagra (2011). Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications.

[17] Anil Kumar Rajagiri , Sandhya Rani MN, Syed Sarfaraz Nawaz , and Suresh Kumar T (2019). Speed Control of DC Motor using Fuzzy Logic Controller by PCI 6221 with MATLAB.

[18] Mustafa Demetgul, Osman Ulkir, Tayyab Waqar.(2014). Washing Machine Using Fuzzy Logic.

[19] Manoharan, P. K., Jha, S., & Singh, B. K. (2012). Modeling the risk factors in ergonomic processes using fuzzy logic

[20] Asef Triwahyudi. (2017). Pengenalan Sistem Embedded .https://asef95.wordpress.com/2017/03/08/pengenalan-sistem-embedded/

Published

2021-04-30

Versions